Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis
نویسندگان
چکیده
Age is a significant risk factor for the development of cancer. However, the mechanisms that drive age-related increases in cancer remain poorly understood. To determine if senescent stromal cells influence tumorigenesis, we develop a mouse model that mimics the aged skin microenvironment. Using this model, here we find that senescent stromal cells are sufficient to drive localized increases in suppressive myeloid cells that contributed to tumour promotion. Further, we find that the stromal-derived senescence-associated secretory phenotype factor interleukin-6 orchestrates both increases in suppressive myeloid cells and their ability to inhibit anti-tumour T-cell responses. Significantly, in aged, cancer-free individuals, we find similar increases in immune cells that also localize near senescent stromal cells. This work provides evidence that the accumulation of senescent stromal cells is sufficient to establish a tumour-permissive, chronic inflammatory microenvironment that can shelter incipient tumour cells, thus allowing them to proliferate and progress unabated by the immune system.
منابع مشابه
CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth
Previous studies have demonstrated that loss of caveolin-1 (Cav-1) in stromal cells drives the activation of the TGF-β signaling, with increased transcription of TGF-β target genes, such as connective tissue growth factor (CTGF). In addition, loss of stromal Cav-1 results in the metabolic reprogramming of cancer-associated fibroblasts, with the induction of autophagy and glycolysis. However, it...
متن کاملSenescence and tumor suppression
Cellular senescence has emerged as a potent tumor suppression mechanism that restrains proliferation of cells at risk for malignant transformation. Although senescent cells have permanently exited the cell cycle, their presence can have detrimental effects on the surrounding tissue, largely due to the development of the senescence-associated secretory phenotype (SASP). Here, we review the tumor...
متن کاملTrp53 inactivation in the tumor microenvironment promotes tumor progression by enhancing pro-inflammatory tumor stromal populations
Inactivation of the tumor suppressor p53 is one of the leading causes of cancer as p53 inactivation via somatic mutations occurs in 50% of human cancers and sometimes in fibroblasts within the tumor microenvironment (TME). Recent studies by our laboratory and others suggest that p53 inactivation promotes a pro-inflammatory host microenvironment elevated serum inflammatory cytokines/ chemokines,...
متن کاملAngiogenesis, Metastasis, and the Cellular Microenvironment Osteopontin Stimulates Preneoplastic Cellular Proliferation Through Activation of the MAPK Pathway
Alterations in the microenvironment collaborate with cell autonomous mutations during the transformation process. Indeed, cancer-associated fibroblasts and senescent fibroblasts stimulate tumorigenesis in xenograft models. Because senescent fibroblasts accumulate with age, these findings suggest that they contribute to age-related increases in tumorigenesis. Previously we showed that senescence...
متن کاملHow to Hit Mesenchymal Stromal Cells and Make the Tumor Microenvironment Immunostimulant Rather Than Immunosuppressive
Experimental evidence indicates that mesenchymal stromal cells (MSCs) may regulate tumor microenvironment (TME). It is conceivable that the interaction with MSC can influence neoplastic cell functional behavior, remodeling TME and generating a tumor cell niche that supports tissue neovascularization, tumor invasion and metastasization. In addition, MSC can release transforming growth factor-bet...
متن کامل